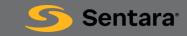
2024 MID-ATLANTIC CONFERENCE 12th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

Hilton Virginia Beach Oceanfront Virginia Beach, Virginia



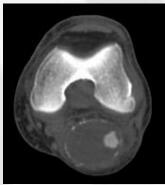
The Acute vs Chronically Ischemic Lower Limb – When is This an Emergency?

Disclosures

- Yesterday I received \$175 in the mail for filling out a long 3rd party survey about a Philips product a few months ago
- Other than that, none

Short Answer

- Purely chronic lower limb ischemia is <u>never</u> a true emergency
- Acute on chronic limb ischemia is rarely a surgical emergency
- Acute limb ischemia is usually a surgical emergency
 Good physical exam identifies the few exceptions



- Can occasionally be a surgical <u>URGENCY</u>
 - Tissue loss with wet gangrene
 - a/w ascending infection/fasciitis/sepsis/AKI etc
 - High rate of major amputation, morbidity, and mortality if local infection not quickly addressed surgically
 - Revasc best done after infection controlled
 - Severe Ischemic Rest Pain
 - Generally difficult to medically manage pain
 - Expedite angio and intervention or surgery

- Etiology
 - <u>Atherosclerosis</u>
 - Repeated embolic insult

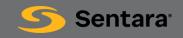
- From proximal aneurysm or other luminal defect
- Valve vegetations/endocarditis
- Untreated hypercoaguable state
 - Lupus anticoagulant

Classification


- Rutherf

Rutherford classification for chronic limb isc

Grade	Category	Clinical description	Grade	Symptoms		
0	0	Asymptomatic—no h	Stage I	Asymptomatic, incomplete blood vessel obstruction	mm Hg but at least 20 mm Hg lower	
	1	Mild claudication	Stage II	Mild claudication pain in limb		
I	2	Moderate claudicatio	Stage IIA	IIA Claudication at a distance > 200 m		
	3	Severe claudication			۱P after exercise < 50 mm Hg e or metatarsal PVR; TP < 30 mm Hg	
II	4	Ischemic rest pain	Stage IIB	Claudication at a distance < 200 m		
III	5	Minor tissue loss—ne			t or barely pulsatile; TP < 40 mm Hg	
	6	Major tissue loss—ex	Stage III	Rest pain, mostly in the feet		
			Stage IV	Necrosis and/or gangrene of the limb		


Abbreviations: AP, ankle pressure; PVR, pulse vo

or gangren

- Critical Limb Ischemia (CLI)
 - Rest pain or tissue loss (Rutherford grade 2 or 3)
 - 95% of pts with rest pain will lose limb within 1 yr if not revascularized
 - Can be managed in OP setting commonly
 - PVL -> Angio/int -> ?OR

- Incidence 1-2 per 10k per year
 - 12% of adult population has PAD
- Risk factors smoking, HTN, HLD, DM, CKD, CAD, a fib
- Prognosis 1 yr limb loss up to 40%, 1 yr mortality rate 20+%

Does Acute vs Chronic Matter?

- Outcomes Baril et al 2013
 - 323 urgent bypasses for ALI vs 5000+ for CLTI
 - 1 yr amp rate 22% vs 10%
 - 1 yr mortality rate 21% vs 13%
 - In hospital MAE 20% vs 12%

ABSTRACTS FROM THE 2013 SOCIETY FOR CLINICAL VASCULAR SURGERY ANNUAL SYMPOSIUM | VOLUME 57, ISSUE 1, P296-297, JANUARY 2013

Outcomes of Lower Extremity Bypass Performed for Acute Limb Ischemia

Donald T. Baril, MD • Virendra I. Patel, MD • Dejah R. Judelson, MD • ... Nathanael Hevelone, MPH • Jack L. Cronenwett, MD • Andres Schanzer, MD • Show all authors

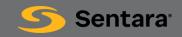
- Presentation "6 P's"
 - Pulselessness: immediate
 - Pallor: 1-5 minutes
 - Pain: 5-30 minutes
 - Paresthesia: 1-3 hrs
 - Paralysis: 4-6 hrs
 - Poikilothermia: 6-12 hrs

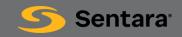
- Important initial questions:
 - How salvageable is the extremity?
 - How much time do we have?
 - What treatment options?

- Workup
 - H&P, pulse exam, CW doppler signals
 - If absent/asymmetric fem pulse get CTA a/p with BILAT runoff if can tolerate contrast
 - AI duplex good alternative
 - ABI +/- LE duplex helpful if can be done quickly
 - BMP/CBC/INR/T&S/EKG

Rutherford ALI Classification

Rutherford classification for acute limb ischemia


		Findings		Doppler signal	
Category	Description/Prognosis	Sensory loss	Muscle weakness	Arterial	Venous
I. Viable	Not immediately threatened	None	None	Audible	Audible
II. Threatened					30
a. Marginally	Salvageable if promptly treated	Minimal (toes) or none	None	Inaudible	Audible
b. Immediately	Salvageable with immediate revascularization	More than toes, associated rest pain	Mild, moderate	Inaudible	Audible
III. Irreversible	Major tissue loss or permanent nerve damage inevitable	Profound, anesthetic	Profound, paralysis	Inaudible	Inaudible


- Etiology
 - In situ thrombosis
 - Common Graft/stent thrombosis, plaque rupture, PAD progression
 - Rare aneurysm thrombosis (esp PopA), acute dissection, trauma, CHF/low flow state, hypercoag, iatrogenic
 - Usually R-IIa, cool/cyanotic, e/o contralateral ASO

- Etiology
 - Embolic
 - Common A fib, atheroembolism, valvular disease/endocarditis, hypercoaguable states
 - Rare MI/LV aneurysm, fat/air/tumor emboli
 - Usually R-IIb, cold/pale/demarcated, + contralat pulse

- Initial Management
 - Anticoagulate and resuscitate
 - Treat other acute issues (MI, Afib with RVR, abx, K+ etc)
 - Consult vascular surgery

- Subsequent mgmt depends on degree of ischemia
 - R-I can be initially managed medically
 - Surgical intervention not always required
 - R-IIa and IIb have salvageable extremities and need urgent revascularization – goal within 3-6 hrs
 - R-III represents non-salvageable limb that will require amputation
 - Typically can be done non emergently

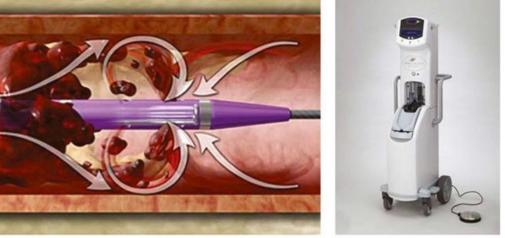
- R-IIa marginally threatened
 - Pts safe for trial of endo therapy and CDT
 - Angiogram, traverse occlusion, place lytic catheter/start infusion and send to ICU, repeat angio ~24 hrs later
 - Allows identification and treatment of "culprit lesion" in in-situ thrombosis
 - **Cardiac emboli are generally low in fibrin and thus poorly responsive to thrombolytic therapy

Catheter Directed Thrombolysis

- Rochester Trial '94
 - CDT with UK vs OS for ALI <7days
 - CDT with fewer MIs and better 30d AFS
- STILE Trial '94
 - CDT with UK or TPA vs OS for ALI <14d and CLI</p>
 - CDT had better 6 mo AFS and shorter LOS
 - Beyond 14d CDT not very effective

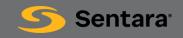
Catheter Directed Thrombolysis

- TOPAS Trial '98
 - CDT with UK vs OS for ALI <14d</p>
 - Similar AFS and overall survival at 1yr
- NATALI Database 2004
 - 1,133 ALI Pts with CDT
 - 75% 30d AFS
 - 12% 30d mortality



- R-IIb immediately threatened
 - Need immediate revasc, no time for CDT
 - Traditionally emergent surgical thrombo-embolectomy via one or more incisions
 - Four compartment fasciotomies
 - Perc mechanical thrombectomy gaining popularity

- Outcomes Leung et al, J endovasc therapy 2015
 - 283 pts with ALI treated with rheolytic thrombectomy
 - +/- adjuvant CDT
 - 35% were R-IIb ALI
 - 83% technical success
 - 50% did not require ac
 - 1yr AFS 81%



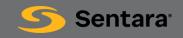
• Outcomes better in inf

- Outcomes Baril et al 2014
 - Between '98 and '09 endo Tx of ALI increased from 15 to 33%
 - 1 yr amp rates decreased 15% to 11%

Perc Mechanical Thrombectomy

- Jarosinski et al JVS 2024
 - No difference in amp or death
 - 10.6%
 - PMT a/w shorter LOS

Percutaneous thrombectomy for acute limb ischemia is associated with equivalent limb and mortality outcomes compared with open thrombectomy


Marissa Jarosinski, MD <u>A</u> ⊡ • Jason N. Kennedy, MS • Yekaterina Khamzina, MD • ... Mohammad Eslami, MD, MPH • Natalie D. Sridharan, MD, MSc • Katherine M. Reitz, MD, MSc • Show all authors

Published: January 12, 2024 •

VS Vascular Surgery SVS

- PMT a/w 2x more reintervention (~80% salvaged endo)
 - No difference in tibial subgroup

Summary

- Purely chronic lower limb ischemia is <u>never</u> a true emergency
- Acute on chronic limb ischemia is rarely a surgical emergency
- Acute limb ischemia is usually a surgical emergency
 Good physical exam identifies the few exceptions

Questions

